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Abstract
The last decade has seen a large increase in the number of electronic-structure calculations that
involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian.
The Hubbard term is then determined either at the mean-field level or with sophisticated
many-body techniques such as using dynamical mean-field theory. We review the physics
underlying these approaches and discuss their strengths and weaknesses in terms of the larger
issues of electronic structure that they involve. In particular, we argue that the common
assumptions made to justify such calculations are inconsistent with what the calculations
actually do. Although many of these calculations are often treated as essentially first-principles
calculations, in fact, we argue that they should be viewed from an entirely different point of
view, namely, as based on phenomenological many-body corrections to band-structure theory.
Alternatively, it may also be considered that they are just based on a Hubbard model that is
more complex than the simple one- or few-band models traditionally used in many-body
theories of solids.
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1. Introduction

Since the very early days of quantum mechanics, the exact
electronic Hamiltonian, written in terms of the kinetic energy
and electrostatic interactions between the electrons and with
the nucleus, has been known. In non-relativistic second-

quantized form, for example, this can be written as

Ĥ =
∑

σ

∫
drψ†

σ (r)

[−h̄2

2m
∇2 + VN(r)− μ

]
ψσ (r)

+ 1
2

∑

σσ ′

∫
dr dr′ψ†

σ (r)ψ
†
σ ′(r

′)VC(r − r′)ψσ ′(r′)ψσ (r),

(1)

where VN(r) is the Coulomb interaction between the electrons
and the nuclei, VC(r − r′) is the Coulomb interaction (e2/|r −
r′|) between the electrons, ψ†

σ (r) and ψσ (r) are creation
and destruction operators for an electron at r with spin σ ,
and μ is the chemical potential. Since this Hamiltonian has
strong interactions between all the electrons in a solid, it is
fundamentally a many-body problem by nature, and is too
intractable to be capable of exact solution. Density functional
theory and its application to calculations of the electronic band
structure (BS) of materials [1–3] has had a profound impact
on condensed matter physics. With fast computers, excellent
numerical algorithms, and good basis sets for expanding the
resulting one-particle equations, it has been possible to reliably
predict many properties of materials from first-principles, such
as the correct ground-state crystal structure and good values
for the internal atomic positions and lattice parameters by
minimizing the total energy of the band structure.
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Nonetheless, despite the excellent success of the local-
density approximation (LDA) band-structure (LDA-BS) theory
in this respect (note that by the term LDA we also include
the gradient corrected or GGA versions of this theory), there
have been many well known examples of its failures as well,
such as band gaps in semiconductors that are about 50–
80% smaller than the experimentally measured values and
an incorrect description of many aspects of the electronic
structure of strongly correlated electron systems such as
mixed-valence, transition-metal oxides, heavy fermions, and
high-temperature superconductors. These failures can usually
either be attributed to the use of a local potential to represent
exchange, which is actually non-local, or more importantly to
not adequately treating the many-body electronic correlations.
Most involve experiments aimed at some type of spectroscopic
or excited-state properties of the electronic quasiparticles such
as photoemission or the presence or absence of band gaps.

To remedy these problems, many new techniques have
been developed, particularly with respect to strongly correlated
electron systems. These methods usually add a model
Hubbard–Hamiltonian term to the band-structure Hamiltonian,
and hence have the generic form:

Ĥ =
∑

k,ilml σ,i ′l′ml′ σ ′
[H 0(k)]ilml σ,i ′l′ml′σ ′ ĉkilml σ

† ĉki ′l′ml′ σ ′

+ 1
2

∑

i,mσ �=m′σ ′
Uimσ,im′σ ′ n̂imσ n̂im′σ ′ + V̂DC. (2)

The first term is an LDA one-electron band-structure
Hamiltonian summed over Bloch vectors k and with orbitals
at lattice sites i , orbital momentum l, azimuthal quantum
number ml , and spin σ . The second term is a Hubbard-U
term that only applies to the f orbitals, which we will use as
a prototype for the strongly correlated orbitals (in many of
the materials mentioned above, these orbitals are actually d
orbitals). To simplify the discussion we use an orthogonalized
form of the Hamiltonian that ignores any potential overlap
integrals between the orbitals. The term VDC is usually called
the ‘double-counting’ correction term (for a fairly complete
discussion of this term in the literature, see [4], and references
therein). We will refer to this Hamiltonian as a Hubbard-U
band-structure (HU-BS) Hamiltonian. Different methods solve
this Hubbard-U term to various degrees of sophistication.

The techniques involving the HU-BS Hamiltonian have
been considered by many to be a revolutionary new
development in electronic-structure theory, especially for
strongly correlated electronic systems. A recent review
article by Held on dynamical mean-field theory (DMFT) [5],
for example, ends with a claim that is commonly echoed
in many places, namely, that ‘the advances in electronic-
structure calculations through DMFT put our ability to predict
physical quantities of such strongly correlated materials onto
a similar level as conventional electronic-structure calculations
for weakly correlated materials—at last’.

Given such optimism in the field, we feel that it is timely
to review these new HU-BS methods from the perspective of
basic electronic-structure theory. Because the mathematical
details of the methods have already been heavily reviewed
many times recently, we will focus this review primarily on

more fundamental aspects. Given the history of electronic-
structure methods and what we know about the underlying
theory, what is the role and usefulness of HU-BS approaches?
How predictive are they in practice? How much can we trust
the results of such theories and how optimistic can we be
that they represent the revolutionary breakthrough ascribed
to them? In addition, how seriously should we view the
development of even more sophisticated methods based on this
approach, especially in light of considerations involving the
underlying foundations of the starting Hamiltonian upon which
these sophisticated mathematical tools are employed?

Finally, to be clear about the focus of this review, we
note that we will ignore electron–phonon and other vibrational
aspects of electronic structure in this paper, as well as pairing
and superconductivity, and will only consider the case where
all of the atoms are at static positions within the unit cell of a
periodic solid.

2. Failures of band structure

Before turning to specific aspects of the HU-BS methods, it is
useful to begin by reviewing the failures of conventional LDA-
BS methods that motivate the search for improvements. By
understanding what has gone wrong, we will gain insight into
what the HU-BS methods are attempting to achieve.

A brief catalog of typical failures include: (1) BS
predictions of metallic materials that are experimentally known
to be insulating (e.g., CoO and FeO), (2) absence of magnetism
for materials that are magnetic (e.g., for many undoped high-
temperature superconducting oxides) and vice versa (such as
Pu), (3) band gaps that are much too small compared with
experiment (e.g., for many semiconductors), (4) electronic
specific heats that are drastically too small (e.g., for heavy
fermion materials), (5) missing peaks at the Fermi energy (e.g.,
Kondo-like peaks), and (6) missing satellite spectra (e.g., as
occurs in Ni). More examples can no doubt be found, but this
list suffices for our purposes.

When examining this list, it becomes clear that many of
the problems listed have to do with the spectral properties of
the electronic structure of a material. However, as explained
carefully in the early classic papers [1, 2] on LDA, this
type of theory is designed to minimize the total ground-state
energy of the electrons in a material as a functional of the
spatial distribution of the number density of electrons. Thus,
the eigenvalues of the Kohn–Sham equations [2] were never
supposed to represent the actual quasiparticle spectrum of
electrons. Nonetheless, because the eigenvalues often, in fact,
are a reasonably good representation of the spectral properties
measured in experiments, this identification is commonly made
in practice. Hence, although everyone admits that this has no
justification, most attempts to improve BS theory are actually
attempts to make corrections to the eigenvalue spectra to
bring it into agreement with various spectroscopies that probe
the quasiparticle properties of the materials, such as optical
and photoemission spectra. Even the metal versus insulator
problem involves this issue, since this distinction depends upon
knowing the quasiparticle spectral distribution as a function of
energy.

2



J. Phys.: Condens. Matter 21 (2009) 343201 Topical Review

From this very basic point of view, one could strongly
question why band-structure theory should be used for any
spectral property, since there is no formal justification for
such an application! So, in this respect, a correct starting
point for a HU-BS description should actually begin with an
explanation of what spectral features an LDA-BS description
can be expected to accurately predict, and what many-body
modifications need to be made to improve this description. If
LDA bands are to be used for the quasiparticle description of
the non-f electrons in this approach, it is important that this part
of the theory should be placed on a firmer foundation. As far
as we know, this has never been done in any satisfactory way.

In order to examine this question, the best approach is
probably to consider the GW approximation [6, 7]. Such a
theory is developed in a Green’s function formalism, which
is necessary in order to calculate spectral properties. The
one-shot GW approximation can be written as an RPA-
like correction to any one-particle Hamiltonian, such as, for
example, an LDA band-structure Hamiltonian. GW theory has
a formal derivation, and it is very clear what physics it includes
and what it does not include.

In this type of approach, one could ignore the original
derivation of LDA theory, and simply treat the Kohn–Sham
equations as an approximate one-electron representation of
the electronic Hamiltonian. The Green’s function for this
Hamiltonian can be used to calculate spectral properties, and,
if desired, to lowest order in the screened Coulomb interaction,
these results can then be approximately corrected to provide a
better many-body theory of the electronic structure. Framed
in this way, one can ask if better one-electron Hamiltonians
than LDA would provide a better starting point for spectral
properties. In fact, for example, ideas based on GW theory
for such an improved Hamiltonian has been proposed by
van Shilfgaarde et al [8]. Of course, better many-body
corrections would then need to be added to any such one-
electron approach.

Historically, electronic-structure methods have forked into
two paths. The beginnings of this division were seen even
40 years ago [7]: ‘on the one hand, we have had the
enormous wealth of energy band calculations which have had
tremendous success in explaining the properties of specific
solids, but in which the connection with first-principles is
not always apparent. On the other hand, we have seen the
spectacular progress of many-body theory applied to the solid
state, which has given a number of new results, although often
of a rather general and formal nature, such as to provide the
justification and a formal basis for a one-electron theory’. In
today’s perspective, a very large effort has gone into improving
the first-principles local-density approximations in order to
provide the best possible one-electron theory of electronic
structure, with the main focus on the accuracy of the total
energy functional. The advantage of this ‘fork’ is that such
theories are usually first-principles (i.e., parameter free) and
provide a detailed calculation of specific wavefunctions and
their spatial distribution with respect to the actual crystal
structure of the material, and also include the atomic number
and core electrons of the relevant atoms. It is also usually
possible to find the optimal atomic locations by energy

minimizations. The weakness of these types of theories
is their poor treatment of the many-body and quasiparticle
aspects of the electron–electron interaction. On the other hand,
approaches in the second fork have attempted to focus on this
many-body character, albeit in the form of simplified model
Hamiltonians such as the Hubbard or Anderson Hamiltonians,
which can then be solved by a variety of sophisticated many-
body techniques involving various levels of approximation.

More recently, these two ‘forks’ have been merged into
unified approaches, e.g., LDA + U (see, for example, [9]
and references therein) or dynamical mean-field theory, DMFT
(see, for example, [10, 11, 5] and references therein), that
are believed to include the best aspects of both types of
approaches. These are the HU-BS methods mentioned above.
In order for theory to provide a proper guidance or context
for various experiments on different types of materials, it is
essential to retain the details about the types of atoms, their
orbital character, and the atomic locations of the atoms in the
unit cell. Otherwise, the calculations often become generic and
less useful. This is included in the BS part of the theory. On
the other hand, many materials clearly exhibit important many-
body effects that must be treated with more sophistication than
LDA-BS methods. This is treated by many-body methods
applied to the model Hubbard term in the theory. Because these
HU-BS theories have been ‘built’ on the BS Hamiltonian, in
the literature and at scientific conferences, one commonly finds
that many of these calculations have been de facto considered
as quasi-first-principles methods. It is the purpose of this paper
to counter this prevailing assumption and to provide a proper
context for these new techniques.

As mentioned above, the types of electronic-structure
calculations that we will consider, in particular, are all based
upon adding an additional Hubbard-U term (or one of its
variants) to the band-structure Hamiltonian and then solving
the resulting many-body problem to some level of treatment.
When examining such approaches, the critical question to ask
is what such ‘hybrid’ approaches mean, or how one should
understand them. How first-principles are such approaches
and do they provide an adequate treatment of the electronic
structure? This type of discussion rarely occurs in the
literature, but yet is crucial if the field is to properly advance.

3. What is a good band structure; what does a
band-structure measure?

Since HU-BS methods are designed to correct band-structure
calculations and to make them more realistic (i.e., to have
better agreement with experiment), it is useful to review what
we may mean by a good band structure or what a band structure
actually measures. In this regard, we can begin by reminding
ourselves what goes into a band structure and what quantities
result. The input to a band structure are the atomic positions
and types of atoms (e.g., Cu or Si) within a unit cell. The
band-structure method then involves generating a one-electron
Hamiltonian and calculating the electronic wavefunctions and
energy eigenvalues. It also provides a total energy, and number
density (or charge density) and spin density as a function of
position. From the energy eigenvalues a density of states can
be calculated.
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The total energy as a function of unit cell dimensions and
atomic positions is very useful since changes in the total energy
can provide forces on atoms that can be used in molecular
dynamics programs, for example, and can provide energy
differences between different crystal structures. A good band
structure could be defined in terms of how well it calculates this
total energy. However, this is not the main focus of this article.
We are more concerned with quasiparticles, spectral properties,
and the energy distribution of electrons. These come from the
energy eigenvalues or dispersion relations (energy eigenvalues
as a function of k in the Brillouin zone).

To answer the question of what a good band structure is
and how we can experimentally confirm such a band structure,
one has to first ask first what are the fundamental intrinsic
mathematical formulations of the electronic structure of a solid
and secondly how various experimental spectroscopies are
related to this formulation. About 40 years ago, Hedin and
Lundqvist wrote a very significant review article [7] that very
clearly delineated the answer to these questions.

With respect to the first question, the answer surely
must be that fundamental theoretical functions that must be
calculated are the one-particle and, more generally, n-particle
Green’s functions. The one-particle Green’s function, for
example, provides information on the energy needed to add
or remove one electron from the solid as well as the energy-
dependent spectral density, which can be written in terms of
the imaginary part of the Green’s function. The two-particle
Green’s function arises in a simple and direct calculation of
the total energy (although this can be reformulated in terms
of the one-particle Green’s function as well), as well as
the dielectric and other response and correlation functions.
Many of these are needed to evaluate neutron scattering and
magnetic response functions, for example, such as magnetic
susceptibilities or superconducting pairing. The value of the
Green’s function approach is that it can incorporate simple
approximations like one-electron approaches and yet can be
generalized to contain the full many-body physics of the
electronic structure, also including, for example, plasmons or
other collective excitations.

When the one-electron band structure is put into a
Green’s function form, the results are very simple. The
imaginary part of the Green’s function is just a sum over delta
functions at the energies of the different eigenvalues. Because
the band structure is a one-electron theory each electron
acts independently and excitations involve only differences
between the various energy eigenvalues with no correction
effects. Because the quasiparticle spectra are just a series
of delta functions, the lifetime of each quasiparticle is
infinite (there is no broadening of the spectral function by
lifetime effects). Also, because of the independent particle
approximation, there are no collective excitations.

For this reason, the predicted spectrum of the band
structure is simply a series of sharp quasiparticle excitations
(band energies as a function of k). Corrections to this
spectrum could come in two possible forms: (1) single-
electron corrections that would shift the energy eigenvalues
as a function of k, and (2) addition of a frequency (and
k-dependent) self-energy that could also shift the effective

quasiparticle energies (through the real part of the self-energy
evaluated at the quasiparticle energy) as well as provide
quasiparticle lifetimes (through the imaginary part of the self-
energy evaluated at the quasiparticle energy), and other-excited
state effects such as satellite features at other energies. As
we will see below, mean-field Hubbard model theories are
examples of the first type of correction, and dynamic many-
body theories like DMFT the latter type.

To understand how ‘good’ this band structure is requires
experimental verification of the spectral properties or other
ways of evaluating the Green’s function that band structure
predicts. This is far from an easy task and in general
involves correcting raw experimental data for a variety of
matrix elements, and other surface and experimental effects
(for example, secondary electrons and experimental resolution,
etc). These issues are discussed later in this article (see
section 8). Here, it should only be noted that many of these
correction effects are often not carefully taken into account
and our knowledge of the ‘experimental’ spectral functions are
probably not very good for most materials.

Finally, since HU-BS methods only correct the ‘strongly
correlated’ orbitals and leave the other (usually s, p, and some
d) orbitals unchanged, the question of how well conventional
band-structure theory applies to the spectroscopic properties
of these more extended orbitals is actually very important and
should be studied much more systematically than has been
done up to now.

4. The Hubbard term

There are several important features about the HU-BS
Hamiltonian that must be emphasized. First, the band-
structure part of the Hamiltonian identifies specific orbitals
and various hybridizations that provide a realistic description
of the underlying electronic structure and take into account
the correct underlying crystal structure. In addition, such
calculations are first-principles and involve no adjustable
parameters. Secondly, the Hubbard term requires knowing the
occupation numbers of the ‘correlated’ f orbitals (as mentioned
above, we use the convention that f orbitals will be the
correlated orbitals in this paper).

It should be pointed out that this ‘hybrid’ Hamiltonian
has no derivation. It is written down based on an intuitive
understanding of the electronic structure. The two terms
are simply added together with no formal justification. The
connection between the two terms comes through the f
occupation numbers in the Hubbard term, which are assumed
to be the same orbitals as the f orbitals of the underlying band-
structure (the first term of the Hamiltonian). Hence the many-
body treatment, which will only be applied to the second or
Hubbard term involves a projection of the Bloch states onto
the f orbitals.

The main assumption made by theories that involve adding
a Hubbard U term is that band-structure calculations treat
the Coulomb repulsion between electrons at the mean-field
level and that a more sophisticated many-body treatment is
necessary to handle strong electronic correlation effects. Thus
the Hubbard U term is reintroduced in a simplified way so that

4



J. Phys.: Condens. Matter 21 (2009) 343201 Topical Review

a proper many-body treatment can be performed on this term.
To avoid double counting, the mean-field evaluation of this
term is subtracted out in the belief that this removes the same
amount of Coulomb repulsion from the band-structure part of
the Hamiltonian. Hence, many-body effects are then included
at some level of sophistication while mean-field effects are
canceled out.

It is important to consider whether these assumptions
make any sense. We believe that in fact they are seriously
flawed. For example, the Hubbard U term is strongly screened
and appears nowhere in the original Hamiltonian, which
directly treats the explicit unscreened Coulomb repulsion.
In addition, LDA calculations include a local exchange–
correlation potential and hence involve more than a mean-
field (or Hartree) treatment of Coulomb repulsion. A more
straightforward approach would be to do a Hartree calculation
of the electronic structure and then add an unscreened Hubbard
U term upon which to do the many-body treatment (including
screening). This would be a disaster and such a theoretical
approach would lead to enormous errors in the electronic
structure.

One useful way to assess the validity of adding this term to
the BS Hamiltonian is to take the local limit of this theory. It is
often asserted that HU-BS methods become more exact at the
correlated orbital becomes more localized. An extreme version
of localization is to consider the isolated atom. For example,
it should be possible to do both LDA + U and DMFT for an
isolated atom. In addition, the constrained LDA methods for
calculating the effective U should be very easy!

If this were to be done, the results would probably be
very poor indeed. Certainly the U would not have the large
screening of the solid and would most likely revert back to the
20–30 eV characteristic of the unscreened Coulomb integrals.
In additional most of the multiplet structure of the atom would
be missing, unless it involved only direct f–f multiplets and
hence perhaps was specifically taken into account by the
Hubbard-U term.

This example is actually a very useful illustration of how
dangerous it is to assume that the HU-BS Hamiltonian is a
good Hamiltonian to describe the overall electronic structure
of a system. It directly demonstrates how strongly the HU-BS
method truncates the original exact Hamiltonian and therefore
how severe this approximation is. Is it possible to really assume
that the screening of a solid can kill off so many aspects
of the electronic structure that such a simplified Hamiltonian
as in the HU-BS method is justified? Thus, it shows very
clearly how drastically we have reduced the actual complexity
of the electronic structure when applying HU-BS methods.
Obviously, one must take the results from such theories with
many misgivings. In fact, as we argue elsewhere in this review,
it only makes sense to give up on the notion that these types
of calculations are first-principles in any sense of this word,
and that they can only reflect a convenient way to modify the
spectral weight of the band-structure predictions so as to better
fit and interpret experimental data.

5. Mean-field corrections

Mean-field corrections to the original band structure through
the use of the Hubbard term (i.e., LDA + U ; see, for
example, [9] and references therein) provides an important
illustration of how the addition of model Hamiltonian terms
modifies and affects the original band structure. These
applications are especially simple in that they do not change
the one-electron character of the Hamiltonian and hence can
be solved simply and accurately. In effect, they are simply a
slightly different band structure than the LDA starting point.

In a Hubbard framework, these modifications are written
in terms of the occupation operator of specific orbitals (the
‘strongly correlated’ orbitals). Hence they all have the same
generic form:

HMF =
∑

imσ

Vimσ n̂imσ

where Vimσ is a function of the occupation numbers of the f
orbitals on the same site i , and n̂imσ is the number operator
for the f orbital imσ . In the mean-field approximation this is
usually a linear function of the occupation numbers

Vimσ = V 0
imσ +

∑

m′σ ′
Uimσ,im′σ ′nim′σ ′,

where V 0
imσ and Uimσ,im′σ ′ are numerical constants, and nim′σ ′

are the occupation numbers of the f orbitals (which have to
be solved self-consistently in the course of the calculation).
This approach can, of course, also be generalized for nearest-
neighbor or more distant Coulomb-like interactions.

The first point to note about these relationships is that
they depend on the number operator of the correlated orbitals.
Hence they are orbital-dependent interactions and require a
projection of the electronic states onto the number density on
these orbitals in order to specify the interaction. Thus they
depend specifically on the basis set that is used. Intuitively,
they are meant to be intra-atomic corrections, so that one
prefers that these orbitals look as atomic-like as possible.
There are actually two different choices that can be made
in this regard. Since many BS methods involve muffin-
tin basis sets that have specific numerical wavefunctions for
each type of orbital angular momentum, one could project
these occupation numbers onto an occupation number for
only these parts of the wavefunctions. As the wavefunctions
in a solid extend both into the interstitial region and other
atomic spheres, such occupation numbers would always be
less than one when projected onto the radial wavefunction of
any specific sphere. Alternatively, one can view these atom-
centered basis functions to be Wannier functions centered on
each site, and to use maximally localized Wannier functions so
that the portion of each Wannier function has as much atomic-
like character as possible on the relevant atomic center. Each of
these choices has some drawback. The first choice is somewhat
ill-determined since it involves the way the wavefunctions are
normalized, and the second choice puts parts of the Wannier
function into the interstitial region and onto the s, p, and d
orbitals of other atoms and hence loses some of the intra-
atomic character that is being corrected for. Both choices
depend on the size of the muffin-tin radii and how much of

5
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the wavefunctions are localized within a given sphere. Either
choice is only likely to be somewhat satisfactory for very
localized or atomic-like wavefunctions and to become less
well defined as the wave functions become more diffuse. In
practice, there is some interplay between the value of the
projection used and the parameters of the model Hamiltonian
term that is used. For example, if the method chosen for
the projections leads to smaller occupation numbers, one can
correct for this by increasing the values used for the mean-field
(i.e., the Hubbard-U ) parameters.

The first correction factor (V 0
imσ ) is usually described as

a ‘double-counting’ term and simply shifts the bare energy
level of that specific f orbital up or down in energy. It can
be used to precisely place the energy of any given orbital
wherever it needs to be in order to achieve good agreement
with experiment. If it is independent of the z-projection of
the orbital (m), it simply shifts all the f orbitals up or down.
An alternative way of viewing this correction is as a way of
modifying the occupation number of any orbital. By shifting
their energy up or down, one controls how much of the orbital
is occupied. For example, this type of interaction is identical
to that which is used as the Lagrange parameter in constrained
calculations of the Hubbard U .

In the literature, different choices are made for this first
correction factor for different ‘flavors’ of mean-field theories.
Since the ‘double counting’ is actually an illusion (one is
actually not adding and subtracting terms from the original
starting Hamiltonian), the only satisfactory way to choose
which method one wants to employ (or perhaps to add
even a different constant shift of the orbitals) is to compare
with experiment. Otherwise there is no fundamental physics
argument to choose one method in preference to the other.

The second term in mean-field theories (involving
Uimσ,im′σ ′) is an orbital polarization term. It causes different f
orbitals to shift in terms of their relative energies depending on
the specific occupations of each orbital and on the values of the
coefficients U that are chosen (especially if they are positive or
negative). Given this functional form, any polarization that is
desired in order to fit experiment can be forced upon the band-
structure solution if the proper coefficients are chosen to do
this.

In addition to these effects, the orbital dependence of
these Hubbard terms also make it possible to include non-
local exchange effects, since orbital-dependent interactions
can be used to represent a non-local function. For
example, in pseudopotential theories an l-dependent potential
is often added to represent the non-local character of the
pseudopotentials. Since the starting LDA potentials use a
local exchange potential, the Hubbard terms can be a way
of correcting the LDA band structure for non-local exchange.
In the quasiparticle self-consistent method screened non-local
exchange interactions coming from the GW approximation are
included as orbital-dependent potentials to correct the one-
electron band structure [8]. Similarly, it has long been known
that the LDA-BS method suffers from self-interaction errors,
and the LDA + U may be viewed as a method to remove self-
interactions. In Hartree–Fock theory, for example, the self-
Coulomb and self-exchange interactions exactly cancel, but

once the exchange interaction is described in terms of a local
potential, this cancelation is no longer exact. The screening
of the Hubbard U parameters may then be justified by the fact
that part of the self-exchange is being removed by the local
potential.

6. Dynamical corrections

The mean-field treatments considered in the previous
sections are basically different variations on band-structure
calculations. All are one-electron theories and, at best,
simply modify the dispersion relations of the bands (energy
versus k). However, as was well explained in the early
classic paper by Hedin and Lundqvist [7], the exact Green’s
function for the electronic structure contains a significant
frequency dependence in its self-energy. Since a band-
structure calculation is a static approximation for the electronic
structure, it has no frequency dependence, and completely
misses this structure. Hence, if one is going to correct band-
structure theory in order to provide a more realistic electronic
structure, it is essential to consider how to incorporate self-
energy effects.

The GW approximation, as its name suggests, automati-
cally generates a self-energy that is proportional to a Green’s
function times a screened Coulomb energy. Although this self-
energy is the lowest order term in an expansion in the screened
Coulomb energy, it still incorporates some important features
that more sophisticated treatments will need to include. For
example, for weakly correlated systems it maintains the quasi-
particle structure inherent in the band structure. Hence the
spectral function often has a strong peak at the quasiparticle
energy. The energy of this peak can be considered to represent
the corrected band-dispersion relations and the width provides
a lifetime for the quasiparticle. It can also correct the size of
band gaps in semiconductors and open gaps in systems that
otherwise would be metallic within LDA band-structure theory
(although sometimes this requires using LDA+U or other the-
ories to first create a gapped electronic structure as the starting
point for a one-shot GW calculation). Because it incorporates a
non-local screened exchange term, it can also provide the type
of corrections that traditionally have come from Hartree–Fock-
like theories, for example, such as are often added by LDA+U
approaches. Hence it can account for some of the modifications
discussed in the previous section on mean-field approaches.

Although simpler many-body approaches can be incor-
porated into HU-BS approaches [12–14], the state-of-the-art
methods are now almost exclusively DMFT. This involves a
non-perturbative many-body solution of the Hubbard term that
is performed by mapping the original problem onto a single-
impurity Anderson model (SIAM) and solving the SIAM as
exactly as possible. It requires a projection onto the strongly
correlated f orbitals. The method produces a self-energy com-
ing from the f orbitals only. These can generate satellite spec-
tra (lower Hubbard bands) as well as Kondo-like peaks at the
Fermi energy and large specific heat enhancements. They will
also provide an electronic lifetime for states that have a signif-
icant f character. However, these lifetimes only come from the
f electron self-energy, while the other s, p, and d electrons have
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no self-energy or lifetimes and are the original starting band-
structure dispersions. Such theories are useful if electronic
correlations dominate the ‘interesting’ parts of the electronic
structure. The Hubbard-U parameter must either be estimated
from constrained Hubbard-U calculations or fit to experiment.
Although much success has been claimed for these types of
theories, the experimental verification is often qualitative. The
critical assumption of the single-site DMFT is that the self-
energy of the correlated electron states is k independent.

One very serious issue with DMFT approaches is the
‘solver’ for the SIAM equation in the theory. At the present
time, many different solvers are used. Most SIAM solvers,
whether from iterative perturbation theory or non-crossing
approaches, etc, have large uncertainties in the correctness of
the many-body solutions. Only the quantum Monte Carlo and
numerical renormalization group solvers are exact. However,
even for these, despite new algorithmic advances such as
continuous time quantum Monte Carlo techniques, there is
considerable uncertainty about the quality of their results,
since they require an analytic continuation from the imaginary
frequencies that are calculated by the method to the real
frequencies needed for physical properties. Despite new
techniques for accomplishing this analytic continuation, e.g.,
those involving maximum entropy, the real frequency results
are very sensitive to small changes in the imaginary frequency
results leading to concerns of large errors. Also, the Monte
Carlo solvers are most accurate at high temperatures and
become increasingly untrustworthy at low temperatures where
most of the interesting correlation physics lies. Overall, from
the point of view of the SIAM solvers, at this time one has to
strongly question the accuracy of most DMFT calculations. In
particular, it is clear that different solvers will give different
results, as emphasized at the beginning of section 5 of Held’s
DMFT review [5].

In general many-body theories must be added to band-
structure methods if the correct electronic structure is to be
produced. However, self-energy effects need to be generalized
to correct the non-correlated orbitals as well as the correlated
orbitals. All of the quasiparticles (except those exactly at the
Fermi surface) have finite lifetimes and are likely to require
corrections to their dispersion relations relative to the LDA
starting point. In addition, plasmon, lower Hubbard band, and
other non-quasiparticle features will in general be present in
the electronic structure. Such effects are not included in the
LDA band structures.

7. Is the HU-BS approach a real electronic-structure
method?

At this point, based on the previous discussion, it is useful to
summarize our review of the content of the electronic structure
implicit in the HU-BS methods. The most striking comment
that can be made on this method is the starting Hamiltonian
itself, equation (2). Compared with the exact Hamiltonian,
equation (1), it is clear that such a drastic simplification has
been made that the credibility of the HU-BS Hamiltonian
cannot be taken at face value but must be carefully assessed.
Exactly what has been done?

From the form of equation (2) and the fact that the
Hubbard term is a model term whereas the first term is
an attempt at a first-principles description of the electronic
structure, it is reasonable to interpret this Hamiltonian in terms
of its most fundamental part, the band-structure Hamiltonian,
and a correction term, the Hubbard term. In addition it is
commonly assumed that the double-counting term is just the
same term but treated in the same mean-field way as the
local-density approximation, and thus one is essentially adding
or subtracting the same effect in order to do a more exact
treatment of the most difficult part of the physics. However,
this is not really credible. Neither the Hubbard term nor the
double-counting term exist in the original Hamiltonian. They
simply represent an ‘ansatz’ that has been inserted by hand.
Thus, they can only be sensibly understood as a ‘correction’ to
the band-structure Hamiltonian. These terms are a means by
which to include additional many-body physics that was left
out when the rather drastic approximations needed to formulate
the LDA Hamiltonian were made. Hence they make it possible
to build in new features such as satellite peaks and to adjust the
quasiparticle spectra of the band structure.

To approach Hubbard U theories in this spirit provides
new flexibility and should make it easier to resolve certain
controversies that often arise, such as which LDA + U theory
is the best approximation. For example, once it is realized
that double counting is not an issue, one can focus more on
what electronic-structure effects have been left out of the band-
structure approach and what ‘model’ terms could best correct
for these effects with a better many-body treatment. In fact, one
could question, for example, whether other expressions that
are different from the Hubbard U term would lead to better
corrections or whether one should instead add corrections to
the self-energy of the electronic Green’s function instead of
adding additional terms to the Hamiltonian.

An important consideration is whether the HU-BS
approach can actually work. How do we know what physics
is left out, and why do we believe that the model term is the
right correction factor? Finally, can we actually do the many-
body physics in a sufficiently correct way to believe that we
have significantly improved our understanding of the electronic
structure? A bad treatment might actually lead us to a worse
description. Also, an important aspect of this approach is that
we need to include parameters in the theory in order to mask
our ignorance of the real many-body microscopic theory that
we are at present unable to successfully attack. What are the
implications of being forced into a parameterized approach?

Before delving into such matters, however, it is useful
to examine more closely the Hubbard-U term again. If U is
treated as a matrix and allowed to depend on the m projection
of the f orbitals, this term is exactly of the same form as the
original Coulomb integrals for a fixed basis of f orbitals. In
this sense it has the same physics as the Coulomb term for
a fixed (or frozen) atomic basis, although the basis functions
are limited to one type (f orbitals only) and these functions
are extremely limited in scope (a minimal f basis). If used
for an atomic calculation, such a limited basis would give
very poor results for treating the electron–electron Coulomb
terms. So, why should we expect an accurate treatment in the
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solid? We believe that, in fact, this term does not provide
an accurate treatment. The U matrix that is used in the
HU-BS approximation is heavily screened. What is actually
going on is that the many-body treatment of the Hubbard-U
term is being used on something that looks like the original
Coulomb term. Hence, the form of the results (the types of
peaks and excitations in the Green’s function) has a frequency
dependence and quasiparticle spectra similar to what a real
Coulomb term would generate. By scaling down the Hubbard
U one reduces the strength of this effect while retaining
the same functional form (frequency or spectral dependence).
Thus, if the original electronic structure is missing peaks or
features, this is a way of reintroducing them. At the same
time one has a tuning parameter that can be used to fit the
peaks in an experimental spectra. Thus, such a theory provides
realistic spectra that can be fit to experiment, and with which
to correct the LDA band structure for these types of missing
features. Because it is not the electronic-structure calculation
of any actual electronic-structure Hamiltonian but of a model
or pseudo-Hamiltonian, the accuracy of the results really does
not matter. As long as the right types of peaks or other
features that are seen in experiment are present in the many-
body results, the Hubbard-U parameter can be scaled up or
down to fit the experimental peaks or features. Essentially, the
HU-BS approach is just a model solution of a Coulomb-like
term, with the final results scaled and then mixed with some
LDA band structure.

In practice, as discussed above, mean-field treatments
of the Hubbard-U term are used to add in Hartree–Fock-
like atomistic structure into the one-particle spectra. These
can essentially orbitally polarize the correlated f shell of
electrons. They can also account for SIC-like corrections.
For dynamical theories like DMFT, two effects are commonly
introduced: (1) an additional peak in the photoemission (the
lower Hubbard-U band), and a narrowing of the correlated
quasiparticle bands. These are all that are required to fit the
experimental data. Besides the Hubbard-U parameter itself,
additional such parameters such as the Hubbard-J , etc, can
be added if the single U parameter is too crude to fit the
experimental data. Hence, since there are plenty of available
parameters and such limited data set with which to fit to, the
HU-BS approach is almost certain to be in good agreement
with experiment.

This argument could be turned upside down, of course. Is
there any experimental data that show the essential correctness
of the HU-BS approach other than being a simple fitting
procedure? We have been unable to find any such examples,
which leads us to the conclusion that HU-BS approaches are
simply ways to add in some crude many-body effects that are
left out of the original band-structure calculations. Similar
questions could be framed in another way. For example,
are there any surprises from these types of calculations that
could not have been guessed from the model calculations
alone? How much physics does the band-structure piece of
the Hamiltonian add that is not included in the Hubbard-U
term? What new physics has really come from the merging
of these two Hamiltonians? Is there any rigorous confirmation
of DMFT or any other HU-BS approach that goes beyond a fit
to some experimental data?

The ideal approach would, of course, be to start from the
exact microscopic theory of electronic structure and then to
make various approximations that then lead to different levels
of sophistication in the solution. This is similar to the line
of theories starting with Hartree and Hartree–Fock solutions,
through various flavors of local-density approximations, and
up through GW-type theories. However, at this point
our abilities to calculate true many-body effects from first-
principles appears to have hit a dead end, in the sense that it
is unclear how to go further with a tractable theory.

This is, in fact, the driving force for developing
Hubbard-U -like approaches. Modern many-body theory has
heavily focused on solving simplified electronic-structure
Hamiltonians based on a simple nearest-neighbor tight-binding
treatment of the Hubbard Hamiltonian, often based on a
single orbital per unit cell. By simplifying the electronic
structure, it was possible to focus on the complex mathematical
manipulations that are necessary to treat the many-body
aspects of the theory. The price that was paid for this approach
was to lose the connection to the specific types of orbitals,
atoms, and their geometries possessed by real materials. Hence
one ended up with ‘spherical cow’ approximations to the
electronic structure of materials that could not well describe
Fermi surface or photoemission details of materials of interest.
To include these material-dependent properties the LDA band
structure was then added back into the various approaches,
with the treatment of the Hubbard U term projected onto
the most localized or strongly correlated orbitals. Since the
model calculations were viewed as simplifications of the real
electronic structure, this lead to the conclusion that one had to
add and subtract terms from the band-structure Hamiltonian,
leading to the notion of double counting, etc.

We believe that the correct many-body treatment of the
microscopic electronic Hamiltonian is still too difficult for
current levels of theory. Hence some simplifications of the
many-body effects will require the introduction of model
terms or expression that parameterize corrections of the first-
principle theory. What these additional terms do in practice
is to push spectral weight of the electronic structure away
from that calculated by the original band-structure theory. For
example, in some materials, remnants of the original atomic
structure show up as satellite features (often described as
lower Hubbard bands) below the conventional valence band
structure or as additional peaks in the density of states at the
Fermi energy (often described in terms of Kondo effects in
many theories). These effects cannot naturally arise in the
one-electron-type approach of band-structure theory. Since
they cannot be calculated from first-principles, one has to add
in parameters to the theory to force the electronic-structure
theory to agree with available experimental data. One can then
question how best to correct the original band-structure theory
to force this agreement, and what understanding such a theory
provides about real electronic structure that an exact theory
would predict. There are also questions about the robustness
of such corrections. For example, is each correction materials
specific, or can trends be determined for classes of materials
that continuously tune these parameters. Also, is there enough
physics in the ‘correction terms’ to allow one to understand the
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correct mechanisms controlling the functionality and many-
body properties described by such theories?

8. Experimental verification

The key to making progress is good experimental data. Since
we cannot trust the current level of theory to accurately predict
materials properties, especially when part of the electronic
structure depends upon unknown parameters, experimental
data is necessary to guide theory.

The chief obstacle with respect to experimental data is
that most experiments do not directly measure the fundamental
mathematical properties of the electronic structure, namely, the
various Green’s functions and spectral densities of states. If
we need completely different electronic-structure theories for
each specific type of spectroscopy, we will only attain many
random bits of information that do not form a coherent whole.
To be useful there has to be a common ground where all the
experimental data converge. This common ground has to be
a fundamental property of the electronic structure and it must
be amenable to theoretical techniques. Hence it makes sense
to focus on spectral and other fundamental properties of the
electronic structure.

From this point of view, one has to ask what each type
of spectroscopy measures and how each one can shed light on
the various Green’s functions or their spectral representations.
This will depend upon a very clear theoretical understanding
of all of the physical processes that are involved in each
spectroscopy and how to account for these in order to pull
out of the raw data the fundamental information about spectral
functions. At the present time, very little emphasis has
been placed on this. Most interpretations of experimental
data are very simple minded and have not changed much
in the last 30 years. Spectrometers and the physical and
electronic equipment used in the various techniques has
undergone enormous improvements, but this is not the case
for the fundamental theory needed to interpret the data. This
is a situation that desperately cries out for improvement.
The best way to advance our understanding of strongly
correlated electron materials, for example, is to improve our
understanding of what each spectroscopy accurately measures
about their properties. This can only be achieved if we have
a proper understanding of the fundamental physics of each
spectroscopic method.

While one could discuss many different types of spec-
troscopy here, probably the most heavily used spectroscopies
that most directly measure electronic spectral densities in-
volve interactions of photons with matter, such as optical spec-
troscopy and photoelectron spectroscopy. In each case, the
fundamental process involves the absorption of a photon by
exciting an electron from an occupied state of the solid to an
unoccupied state. It is useful to do at least a brief exploratory
discussion of how these types of experiments can be related to
the fundamental electronic structure. Here we will only dis-
cuss photoelectron spectroscopy as a prototype for the types of
discussion that need to be more generally employed.

The simplest theories of photoemission (see, for example,
the recent review paper on the cuprate superconductors [15],

that cites many earlier review papers, as well as the standard
book on the subject [16]), use the three-step model developed
in the early days by Spicer and coworkers. This treats
the photoemission process as involving: (1) an electronic
excitation of the system by a photoelectron, (2) the transport
of the photoelectron to the surface, and (3) the escape of the
photoelectron through the surface to the vacuum where it is
detected. Even this very simplified model already hints at
how complicated photoelectron spectroscopy really is. Not
only excitation processes need to be described, but electron
transport and detection as well. Also, the surface clearly must
play an important role.

If we just focus on the first process, the excitation of the
electrons by the photon, even this is not simply related to the
spectral function of the desired one-particle Green’s function.
Clearly, this must involve the transition from an occupied
electronic level to an unoccupied. In a band picture, one would
calculate this from the Golden rule, and this would involve
occupied electrons of a given band index and k being excited to
a higher lying band with some matrix element squared (which
would also, of course, have selection rules). This involves a
convolution of occupied and excited states. From this, how is
the spectral function A(k, ω) to be determined?

In practice, the cuprate review article [15] (see their
equation (12)) recommends using the sudden approximation
and the formula for the observed electron intensity:

I (k, ω) = I0(k, ν,A) f (ω)A(k, ω)

where k = k‖ is the in-plane momentum, ω is the
electron energy with respect to the Fermi level, I0(k, ν,A)
is proportional to a squared one-electron matrix element and
therefore depends on the electron momentum as well as the
energy and polarization of the incoming photon, and f (ω)
is the Fermi function. The function A(k, ω) is the electron
spectral function.

With even this additional level of simplification, analysis
is still not completely simple. In most experimental
papers, it appears as if the angle-resolved experiments simply
track peaks in the observed energy distribution curves as
a function of angle and energy. These peak energies are
then plotted relative to an estimated Fermi energy to produce
an ‘experimental’ band structure. However, what about the
matrix elements I0(k, ν,A). If these are strongly k or energy
dependent, they could certainly drastically distort apparent
band positions. One also has to question how valid the sudden
approximation is (see, for example, the classic discussion
in [17]). The chief argument for such a simplified analysis of
photoemission is that the results appear somewhat similar to
one-electron band-structure calculations!

In the above formula, one has to question what happened
to the unoccupied states that the photoelectron is excited
to? Hüfner’s book suggests using free-electron band-structure
expressions for accounting for this quantity, which would
involve a more complex analysis than given by the above
formula. However, electronic band-structure calculations
suggest that there is significant band-structure effects that
strongly distort even fairly high energy unoccupied electrons

9



J. Phys.: Condens. Matter 21 (2009) 343201 Topical Review

away from their free-electron energies. This is likely to
be the case for the relatively low energies used in the UV
photoelectron range, which has the highest precision. What
are these corrections and how much do they change the
determination of A(k, ω)?

Finally, one should consider the effects of the surface and
a large number of other physical processes such as secondary
electrons that complicate the experiment (see, for example,
the Hüfner book). Even 35 years ago, this complexity was
recognized as important for understanding the comparison
between band theory and photoemission experiments [18, 19].
However, today, most of this complexity seems to have been
swept under the rug, with simple peak evaluations trusted as
reliable estimates of the spectral functions! It is certainly
incumbent upon the experimentalists to correct their data as
carefully as possible in order to provide the best experimentally
determined spectral function as possible.

To us, one of the most problematical aspects of
photoemission is its high surface sensitive. Besides possible
effects in shifting the peak positions in which quasiparticle
energies are based or on the appearance of new surface
electronic-structure peaks, another example of problems with
surface sensitive spectroscopies is the danger of artificial
narrowing of strongly correlated electron bands. Tight-
binding theory suggests that the order of magnitude of the
band width is proportional to the number of near-neighbors
times the nearest-neighbor hopping matrix element (see, for
example, the analysis in [18]). At a surface, there are fewer
nearest neighbors and bands should narrow. This is actually
observed in LDA-like calculations of surfaces. See, for
example, [20]. Correlation effects may artificially enhance
such effects, leading to a significant narrowing of bands that is
purely a surface effect. In the HU-BS methods, band narrowing
can be caused by increasing the value of the Hubbard U .
If this is fit to photoemission that is really measuring the
surface band width, significant errors may be introduced
and misleading conclusions drawn. Perhaps many strongly
correlated materials are far less correlated than they appear, and
the band narrowing observed in experiment is just a measure
of enhanced ‘surface’ electronic structure? It is unknown how
surfaces may modify satellite, Kondo, and other many-body
features. Again, it is possible that they greatly enhance such
effects.

While it is clear that these types of experiments
desperately need a good theoretical underpinning to aid in the
interpretation of the data, on the other hand, the very fact that
such experiments are surface sensitive makes it very difficult to
develop the precise theory needed to interpret them. Surfaces
introduce changes that depend on how they are prepared and
are a much less intrinsic property of a material than bulk
electronic structure. Often the presence of oxygen, hydrogen,
or other impurities can significantly modify the nature of the
surface. In addition, there is the possibility of preferential
segregation of bulk impurities to surfaces, particularly if some
heat treatment or annealing has been performed. For a good
theory to be developed, it is necessary to have a very precise
knowledge of all of the atomic positions and types of atoms
at a surface, before attempting to account for the excitation

process of the photon, and the transport of the resulting
photoelectron to the surface, emission through the surface, and
its collection. This involves very complex physics, and is quite
difficult. However, until we have a better understanding of the
theory of photoemission, and how the nature of these types of
measurements affect the resulting electronic properties that are
measured, it will always be somewhat dangerous to rely upon
such experimental data to tune the parameters of a strongly
correlated material.

In addition to surface sensitivity, lifetime effects can also
be problematic, and may limit precise measurements to energy
regions around the Fermi energy. Usually the lifetime of an
occupied electron state increases rapidly as its energy moves
farther below the Fermi energy. In photoemission, this rapidly
washes out the experimentally determined dispersion relations
and it becomes difficult to know what the quasiparticle energies
are deep (or even moderately) below the Fermi energy. Since
the electronic lifetimes are an intrinsic bulk effect, this effect
cannot be reduced in any type of spectroscopy. This can, for
example, make it difficult to measure shifts between the bottom
of the s band and the position of the bottom of the f band
in actinides, which might be useful to know if one wants to
understand how non-local exchange potentials shift localized
electronic states relative to delocalized.

Viewed more broadly, excitation spectra can have
also additional effects that are unrelated to ground-state
electronic structure, making it difficult to know what
the intrinsic electronic structure is in the absence of the
specific experimental probe used to measure the electronic
structure. A well known example of this is exciton effects
in semiconductors. In an optical probe, the incoming photon
excites an occupied electron to an unoccupied state, creating
an electron–hole pair. The electron and hole repeatedly scatter
off of each other (this is usually calculated by a Bethe–Salpeter
equation) and the resulting excitation lies in the energy gap of
the semiconductor. If not accounted for, this would erroneously
lead to a conclusion that the intrinsic band gap is smaller than
it actually is. Other issues are explicit excitation processes that
are different from ground-state electronic structure, such as
shake-up, shake-off, and other multiplet or other intra-atomic
processes involving electronic excitations that occur nearly
simultaneously with the one-electron process of interest.

Given these experimental difficulties, one can question
how well we know the experimental electronic structure, and
whether the many-body corrections that we are including by
fitting to such data is really correct. There is thus a real need
to develop a better theoretical underpinning for the various
experimental techniques that are being used so that we can
more reliably interpret such data.

9. Summary

HU-BS methods involve adding a Hubbard model term to
an LDA band-structure Hamiltonian. The Hubbard model
term is a static Coulomb interaction for frozen orbitals with
matrix elements that are scaled to fit experiment. A double-
counting term is actually just a way of preventing the average
energy of the correlated orbitals from being pushed too high in
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energy and should be considered just another parameter of the
theory that fits the correct average occupation of the correlated
orbitals. The LDA band structure is a model for the non-
correlated orbitals. It replaces the small number of nearest-
neighbor hopping terms of traditional model Hamiltonians
with the full complexity of all of the relevant orbitals of
the various atoms in the solid. However, it suffers from
the defect that LDA does not correctly treat the spectral
properties of these orbitals. In particular, non-local exchange
and self-interaction correction effects are improperly treated.
The accuracy of the HU-BS methods cannot be determined
very well, because it is difficult to correct any current
spectroscopy sufficiently to accurately measure the intrinsic
spectral functions of the electrons in the solid. In practice, the
HU-BS methods add lower Hubbard band peaks and narrow
the band width of the correlated states. The linear term can
also be used to introduce Hartree–Fock-like structure to open
band gaps and orbitally polarize the electrons. Because these
methods use parameters, they are fits to the experimentally
observed spectra (whether these are an accurate measurement
of the actual spectral functions or not) and are not first-
principles methods. They should be viewed as simply more
elaborate model calculations to include more orbitals than
traditional Hubbard models, which often only have one or a
very small number of orbitals. Because the LDA term takes
care of the non-correlated orbital interactions, the number of
fitting parameters of a traditional Hubbard model is reduced for
these extra orbitals at the price of the loss in accuracy entailed
by the LDA method.

Progress in the future has to involve two aspects. The first
is better first-principles starting points that incorporate more
and more of the correct physics. The better these are and
the more physics they incorporate, the fewer the corrections
that need to be made to compare with experiments. Secondly,
better solutions to a variety of strongly interacting models are
needed. What does the frequency dependence of the exact self-
energy for these various models look like? Will they show
any surprises, such as additional features in their frequency
dependence? If, for example, the exact theory simply shifts
the lower Hubbard satellite away from the position of a
less accurate theory, this could be corrected for by simply
modifying the strength of the Hubbard U parameter. What is
particularly important here, and which has not been carefully
examined in the past, is the generic functional forms that
the many-body solutions involve. For example, the Hubbard
Hamiltonian usually causes lower and upper Hubbard-band
satellite features. What is the functional form of the frequency
response of the self-energy that causes such satellite structure
to appear in the spectral response of the many-body system?
Could one parameterize this in such a way as to compare
different many-body solutions and understand how to include
model frequency-dependent functional forms in self-energy
corrections to the starting band-structure solutions? Could one
model these in a way similar to what is done in Fermi liquid
theory? For example, if one knows that some quadratic or

perhaps exponential frequency dependence must show up in
the exact theory, could one simply parameterize this response
to correct the band structure?

Finally, much more work must go into the interpretation
of various spectroscopies if these are to be accurately related
to the bulk spectral functions predicted by theory. Without
good experimental bulk spectral functions, it is impossible to
tell how good or poor our current models of electronic structure
are. Without a true first-principles method, the parameters of
the HU-BS models must be fit to experiment. The resulting
electronic structure will heavily depend on the quality of the
experimental data that is fit to.
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